
Introduction
Chebyshev Polynomials

Computational Results in Python

A Python Implementation of Chebyshev Functions

Chris Swierczewski 1

cswiercz@amath.washington.edu

1University of Washington
Department of Applied Mathematics

27 May 2010

Chris Swierczewski A Python Implementation of Chebyshev Functions

Introduction
Chebyshev Polynomials

Computational Results in Python

1 Introduction
Polynomial Approximations
The Problem

2 Chebyshev Polynomials
Lagrange Interpolation
The Barycentric Formula
Chebyshev Polynomials

3 Computational Results in Python
The Basic Algorithm
Differentiation, Integration, and Root Finding
Future Work

Chris Swierczewski A Python Implementation of Chebyshev Functions

Introduction
Chebyshev Polynomials

Computational Results in Python
The Problem

1 Introduction
Polynomial Approximations
The Problem

2 Chebyshev Polynomials
Lagrange Interpolation
The Barycentric Formula
Chebyshev Polynomials

3 Computational Results in Python
The Basic Algorithm
Differentiation, Integration, and Root Finding
Future Work

Chris Swierczewski A Python Implementation of Chebyshev Functions

Introduction
Chebyshev Polynomials

Computational Results in Python
The Problem

A Quick Note

To the applied mathematicians: I know Nick Trefethen gave
several talks on Chebfuns this year. Don’t worry! I hope to discuss
some things he didn’t talk about:

why his methods works so well,

how to actually compute Chebfuns,

how to actually compute integrals, derivatives, global roots.

Chris Swierczewski A Python Implementation of Chebyshev Functions

Introduction
Chebyshev Polynomials

Computational Results in Python
The Problem

Two Key Theorems

Weierstrass Approximation Theorem on R (1885)

Suppose f ∈ C 0[a, b]. Then ∀ε > 0,∃p polynomial such that
||f − p||∞ < ε on [a, b].

(Interesting corrolary: R[x] is dense in C 0[a, b]. Q[x] is dense in R[x].

Therefore |C 0[−1, 1]| = |R|.)

Restriction to Degree n Polynomials: Pn
Given f ∈ C 0[a, b] find p∗ ∈ Pn such that

||f − p∗||∞ ≤ ||f − p||∞ for all p ∈ Pn

Fact: p∗ exists, is unique, and goes by the name “best”, “uniform”,

“Chebyshev”, or “minimax” approximation to f .

Chris Swierczewski A Python Implementation of Chebyshev Functions

Introduction
Chebyshev Polynomials

Computational Results in Python
The Problem

Objective

Main Goal

Given f : [−1, 1]→ R, find a polynomial of lowest degree that
approximates f to within machine epsilon. That is, find

pgoal = min
p,deg(p)

||f − p||∞ < εmach

Trefethen’s method: look at polynomials with a particular structure
that make derivatives, integrals, and roots easy to compute.
Use these tools:

Structure #1: Lagrange interpolants

Structure #2: Chebyshev polynomial expansions

Chris Swierczewski A Python Implementation of Chebyshev Functions

Introduction
Chebyshev Polynomials

Computational Results in Python

Lagrange Interpolation
The Barycentric Formula
Chebyshev Polynomials

1 Introduction
Polynomial Approximations
The Problem

2 Chebyshev Polynomials
Lagrange Interpolation
The Barycentric Formula
Chebyshev Polynomials

3 Computational Results in Python
The Basic Algorithm
Differentiation, Integration, and Root Finding
Future Work

Chris Swierczewski A Python Implementation of Chebyshev Functions

Introduction
Chebyshev Polynomials

Computational Results in Python

Lagrange Interpolation
The Barycentric Formula
Chebyshev Polynomials

Adding Some Structure

Trefethen restricts to the space of Lagrange interpolating
polynomials. Here we will show close they get to the minimax
polynomial approximation.

Largrange Interpolating Approximations

Let Ln(f) be a Lagrange interpolant of f on n nodes. Then,

||f − Ln(f)||∞ ≤ (1 + ||Ln||∞)||f − p∗||∞

where p∗ is the minimax polynomial approximation of degree n.

||Ln|| depends on the choice of interpolating points:

Uniform Distribution: ||Ln||∞ = O
(

2n+1

n log n

)
Chebyshev Distribution: ||Ln||∞ = O (log(n + 1))

Chris Swierczewski A Python Implementation of Chebyshev Functions

Introduction
Chebyshev Polynomials

Computational Results in Python

Lagrange Interpolation
The Barycentric Formula
Chebyshev Polynomials

More Reasons to Use Lagrange Interpolation

Lagrange Interpolants over the Chebyshev points have good
convergence properties:

Bounded Variation

If ∂k f : [−1, 1]→ R has bounded variation for some k ≥ 1 then

||f − Ln(f)|| = O(n−k)

Analyticity

If f is analytic in a neigborhood of [−1, 1] then

||f − Ln(f)|| = O(Cn)

for some C < 1.

Chris Swierczewski A Python Implementation of Chebyshev Functions

Introduction
Chebyshev Polynomials

Computational Results in Python

Lagrange Interpolation
The Barycentric Formula
Chebyshev Polynomials

Conclusions About Accuracy

Theorem

Chebyshev interpolants are near-best or spectrally accurate.

Spectral accuracy has to do with how well an approximating
function converges in a spectral domain. (i.e. Fourier) The theory
of Sobolev spaces gives a rich and precise description of why this
works. I would love to discuss this, but I won’t.
The point: Lagrange interpolants over the Chebyshev points
(Chebyshev interpolants) are good polynomial approximations.

For example: they defeat the Gibbs phenomenon.

Chris Swierczewski A Python Implementation of Chebyshev Functions

Introduction
Chebyshev Polynomials

Computational Results in Python

Lagrange Interpolation
The Barycentric Formula
Chebyshev Polynomials

Practical Uses of Lagrange Interpolation

Barycentric Formula

Let (xj , fj) be a collection of N + 1 sample points of f . Then the
Lagrange interpolant over these points can be written as

p(x) =
N∑
j=0

wj

x − xj
fj

/
N∑
j=0

wj

x − xj

with wj = (−1)j . (Divide by two for j = 0,N.)

Benefits:

fast (O(N) evaluation operation count),

numerically stable,

O(N) “updating” method for grid refinements.

Chris Swierczewski A Python Implementation of Chebyshev Functions

Introduction
Chebyshev Polynomials

Computational Results in Python

Lagrange Interpolation
The Barycentric Formula
Chebyshev Polynomials

Why Restriction to [−1, 1]?

Summary so far: we’ve seen the benefits of using Lagrange
interpolation over the Chebyshev points and how the Barycentric
formula allows O(N) evaluation as well as O(N) method of adding
Chebyshev points.
Trefethen exploits another structure: consider only f : [−1, 1]→ R

Chebyshev Polynomials

The Chebyshev polynomials Tn : [−1, 1]→ R are defined:

T0(x) = 1

T1(x) = x

Tn+1(x) = 2xTn(x)− Tn−1(x)

Chris Swierczewski A Python Implementation of Chebyshev Functions

Introduction
Chebyshev Polynomials

Computational Results in Python

Lagrange Interpolation
The Barycentric Formula
Chebyshev Polynomials

Chebyshev Polynomial Expansions

Theorem (Trefethen)

If f : [−1, 1]→ R is Lipschitz continuous then the Chebyshev
expansion

g(x) =
∞∑
n=0

anTn(x)

converges absolutely and uniformly to f . Additionally, the
Chebyshev coefficients are given by

an =
2

π

∫ 1

−1

f (x)Tn(x)√
1− x2

dx

with the special case that for n = 0 the constant changes to 1/π.

Chris Swierczewski A Python Implementation of Chebyshev Functions

Introduction
Chebyshev Polynomials

Computational Results in Python

Lagrange Interpolation
The Barycentric Formula
Chebyshev Polynomials

Relating Chebyshev Polynomials to Chebyshev Interpolants

Chebyshev Polynomial Representations

For x ∈ [−1, 1] define θ = arccos(x) ∈ [0, 2π] and z = e iθ. Then:

Tn(x) = cos nθ = 1
2

(
zn + z−n

)
For Chebyshev interpolants, this is a finite sum:

Expansion Representation

Let p be a Chebyshev interpolant determined by N + 1 grid points
(xi , fi) over the Chebyshev points xi = cos(πi/N). Then

p(x) =
N∑

n=0

anTn(x) =
N∑

n=0

an cos(nθ) = 1
2

N∑
n=0

an(zn + z−n)

Chris Swierczewski A Python Implementation of Chebyshev Functions

Introduction
Chebyshev Polynomials

Computational Results in Python

Lagrange Interpolation
The Barycentric Formula
Chebyshev Polynomials

Definition of Chebfun

Definition

A chebfun is a minimal degree Barycentric Lagrange interpolant of
a function f : [−1, 1]→ R over the Chebyshev points that uses its
Chebyshev polynomial expansion for fast computations.

“Spectrally optimal approximate”

Next section: Given f ∈ Lip[−1, 1], compute its Chebfun, p.

Chris Swierczewski A Python Implementation of Chebyshev Functions

Introduction
Chebyshev Polynomials

Computational Results in Python

The Basic Algorithm
Differentiation, Integration, and Root Finding
Future Work

1 Introduction
Polynomial Approximations
The Problem

2 Chebyshev Polynomials
Lagrange Interpolation
The Barycentric Formula
Chebyshev Polynomials

3 Computational Results in Python
The Basic Algorithm
Differentiation, Integration, and Root Finding
Future Work

Chris Swierczewski A Python Implementation of Chebyshev Functions

Introduction
Chebyshev Polynomials

Computational Results in Python

The Basic Algorithm
Differentiation, Integration, and Root Finding
Future Work

Why Python?

Python is a popular, powerful, and easy to use programming
language. Moreover, it’s open-source and free!

Numpy/Scipy
Sage
Clawpack
Brian

Support open-source! (http://www.opensource.org)

Chris Swierczewski A Python Implementation of Chebyshev Functions

Introduction
Chebyshev Polynomials

Computational Results in Python

The Basic Algorithm
Differentiation, Integration, and Root Finding
Future Work

Generating Chebyshev Functions

Init: begin with N = 4 Chebyshev interpolating points, {xi}
and compute fi = f (xi).

Loop: Compute the discrete cosine transform of the {fi}, {f̂i},
and divide each term by the number of interpolating points,
N. Set ai = f̂i/N.

If:
|aN |, |aN−1| < 2 ∗ εmach ∗max

i
|ai |

then truncate the sequence {ai} down to the term with
largest index M exceeding this bound. The remaining M
terms gives you the “optimal Chebyshev interpolant size.

Else: Loop with 2N.

Chris Swierczewski A Python Implementation of Chebyshev Functions

Introduction
Chebyshev Polynomials

Computational Results in Python

The Basic Algorithm
Differentiation, Integration, and Root Finding
Future Work

Demo

Chris Swierczewski A Python Implementation of Chebyshev Functions

Introduction
Chebyshev Polynomials

Computational Results in Python

The Basic Algorithm
Differentiation, Integration, and Root Finding
Future Work

Integration

Chebyshev Polynomial Integration∫ 1

−1
Tn(x)dx =

{
0 if n odd

2
1−n2 if n even

Integral of a chebfun on [−1, 1]:

Clenshaw-Curtis Quadrature

Given a chebfun p(x) =
∑N

n=0 anTn(x),

∫ 1

−1
p(x)dx =

N∑
n even

2

1− n2

Chris Swierczewski A Python Implementation of Chebyshev Functions

Introduction
Chebyshev Polynomials

Computational Results in Python

The Basic Algorithm
Differentiation, Integration, and Root Finding
Future Work

Differentiation

Chebyshev Polynomial Derivative

If p(x) =
∑N

n=0 anTn(x) then p′(x) =
∑N−1

n=0 bnTn(x) with

bn−1 = bn+1 + 2nan, bN = bN+1 = 0, b0 = b2/2 + a1.

Backsolve to find bn and inverse cosine transform to find
(xi , fi) pairs.

O(N) computation of function derivative.

Chris Swierczewski A Python Implementation of Chebyshev Functions

Introduction
Chebyshev Polynomials

Computational Results in Python

The Basic Algorithm
Differentiation, Integration, and Root Finding
Future Work

Root Finding

Recall that Chebyshev coefficients {an} are the coefficients of the
Laurent series

q(z) =
N∑

n=0

an
(
zn + z−n

)
.

The roots, zi of q, are the roots of zNq(z); a polynomial of
degree 2N in z .

Find the roots of zNq(z) using your favorite polynomial
root-finding algorithm. (Much easier than for a general
function.)

Roots come in pairs {zn, z−1
n }. Project back down to the real

axis with {zn, z−1
n } 7→ 1

2 (zn + z−1
n) = xn.

Toss out any “roots” xn 6∈ [−1, 1].

Chris Swierczewski A Python Implementation of Chebyshev Functions

Introduction
Chebyshev Polynomials

Computational Results in Python

The Basic Algorithm
Differentiation, Integration, and Root Finding
Future Work

Demo

Chris Swierczewski A Python Implementation of Chebyshev Functions

Introduction
Chebyshev Polynomials

Computational Results in Python

The Basic Algorithm
Differentiation, Integration, and Root Finding
Future Work

Future Work

The real power of Chebyshev functions is in creating differential
operators and solving differential equations: given f ∈ L2[−1, 1]
solve

Lu = f .

Reduces to a dense (N × N) matrix solve.

Distinction from finite difference methods: spectral accuracy
is preserved! This means O(εmach) accurate solutions, u.

You can implement this! (See next slide.)

Chris Swierczewski A Python Implementation of Chebyshev Functions

Introduction
Chebyshev Polynomials

Computational Results in Python

The Basic Algorithm
Differentiation, Integration, and Root Finding
Future Work

Future Work

The obvious issue: don’t want to compete with Trefethen et. al.’s
work. (Unless I develop an awesomer algorithm!) Possible
solutions:

1 parallel projects in Python/Sage and Matlab,

2 a core C/FORTRAN library with separate Python and Matlab
interfaces. (A la LAPACK.)

Current Python implementation is an excellent platform for new
Python programmers. Learn Python and Mercurial! Get involved!

http://code.google.com/p/pychebfun

Chris Swierczewski A Python Implementation of Chebyshev Functions

Introduction
Chebyshev Polynomials

Computational Results in Python

The Basic Algorithm
Differentiation, Integration, and Root Finding
Future Work

Thank You

Chris Swierczewski A Python Implementation of Chebyshev Functions

	Introduction
	Polynomial Approximations
	The Problem

	Chebyshev Polynomials
	Lagrange Interpolation
	The Barycentric Formula
	Chebyshev Polynomials

	Computational Results in Python
	The Basic Algorithm
	Differentiation, Integration, and Root Finding
	Future Work

